在Python中实现图像分割可以通过多种方法,以下是一些常用的方法及其示例代码:
方法一:使用PIL(Pillow)库进行图像分割
from PIL import Image
def fill_image(image):
width, height = image.size
new_image_length = max(width, height)
new_image = Image.new(image.mode, (new_image_length, new_image_length))
offset = (new_image_length - width) // 2
new_image.paste(image, (offset, offset))
return new_image
读取图像
image = Image.open('path_to_image.jpg')
填充图像为正方形
filled_image = fill_image(image)
保存填充后的图像
filled_image.save('filled_image.jpg')
方法二:使用OpenCV进行图像分割
import cv2
读取图像
img = cv2.imread('path_to_image.jpg')
二值化图像
_, thresh = cv2.threshold(img, 150, 255, cv2.THRESH_BINARY)
形态学处理
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (10, 10))
closed = cv2.erode(thresh, None, iterations=5)
计算垂直投影
height, width = closed.shape[:2]
v = *width
for x in range(0, width):
for y in range(0, height):
if closed[y,x] == 0:
v[x] += 1
根据垂直投影分割图像
for x in range(0, width):
if v[x] > 0:
left = x
while v[x] > 0:
x += 1
right = x - 1
cv2.rectangle(img, (left, 0), (right, height), (0, 255, 0), -1)
保存分割后的图像
cv2.imwrite('segmented_image.jpg', img)
方法三:使用深度学习模型进行语义分割
from pixellib.semantic import semantic_segmentation
加载预训练的模型
segment_image = semantic_segmentation()
segment_image.load_pascalvoc_model('deeplabv3_xception_tf_dim_ordering_tf_kernels.h5')
对图像进行语义分割
segmented_image = segment_image.segmentAsPascalvoc('path_to_image.jpg')
保存分割后的图像
segmented_image.save('segmented_image.jpg')
方法四:基于图论的方法进行图像分割
import numpy as np
读取图像
img = cv2.imread('path_to_image.jpg')
转换为灰度图像
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
应用阈值进行二值化
_, thresh = cv2.threshold(gray, 150, 255, cv2.THRESH_BINARY)
形态学处理
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (10, 10))
closed = cv2.erode(thresh, None, iterations=5)
计算垂直投影
height, width = closed.shape[:2]
v = *width
for x in range(0, width):
for y in range(0, height):
if closed[y,x] == 0:
v[x] += 1
根据垂直投影分割图像
regions = []
for x in range(0, width):
if v[x] > 0:
left = x
while v[x] > 0:
x += 1
right = x - 1
regions.append((left, 0, right, height))
对每个区域进行标记
for i, region in enumerate(regions):
cv2.rectangle(img, region, (region, region), (0, 255, 0), -1)
保存分割后的图像
cv2.imwrite('segmented_image.jpg', img)
以上
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://sigusoft.com/bj/113953.html