冯诺依曼计算机模型详解 计算机在运行时,先从内存中取出第一条指令,通过控制器的译码,按指令的要求,从存储器中取出数据进行指定的运算和逻辑操作等加工,然后再按地址把结果送到内存中去。接下来,再取出第二条指令,在控制器的指挥下完成规定操作。依此进行下去。直至遇到停止指令。程序与数据一样存贮,按程序编排的顺序,一步一步地取出指令,自动地完成指令规定的操作是计算机最基本的工作模型。这一原理最初是由美籍匈牙利数学家冯.诺依曼于1945年提出来的,故称为冯.诺依曼计算机模型 计算机五大核心组成部分1.控制器(Control):是整个计算机的中枢神经,其功能是对程序规定的控制信息进行解释,根据其要求进行控制,调度程序、数据、地址,协调计算机各部分工作及内存与外设的访问等。2.运算器(Datapath):运算器的功能是对数据进行各种算术运算和逻辑运算,即对数据进行加工处理。3.存储器(Memory):存储器的功能是存储程序、数据和各种信号、命令等信息,并在需要时提供这些信息。4.输入(Inputsystem):输入设备是计算机的重要组成部分,输入设备与输出设备合你为外部设备,简称外设,输入设备的作用是将程序、原始数据、文字、字符、控制命令或现场采集的数据等信息输入到计算机。常见的输入设备有键盘、鼠标器、光电输入机、磁带机、磁盘机、光盘机等。5.输出(Outputsystem):输出设备与输入设备同样是计算机的重要组成部分,它把外算机的中间结果或最后结果、机内的各种数据符号及文字或各种控制信号等信息输出出来。微机常用的输出设备有显示终端CRT、打印机、激光印字机、绘图仪及磁带、光盘机等。下图-冯诺依曼计算机模型图 在上图硬件结构当中,配件很多,但最核心的只有两部分:CPU、内存。所以我们重点学习的也是这两部分。CPU指令结构CPU内部结构控制单运算单数据单 控制单控制单是整个CPU的指挥控制中心,由指令寄存器IR(InstructionRegister)、指令译码器ID(InstructionDecoder)和操作控制器OC(OperationController)等组成,对协调整个电脑有序工作极为重要。它根据用户预先编好的程序,依次从存储器中取出各条指令,放在指令寄存器IR中,通过指令译码(分析)确定应该进行什么操作,然后通过操作控制器OC,按确定的时序,向相应的部件发出微操作控制信号。操作控制器OC中主要包括:节拍脉冲发生器、控制矩阵、时钟脉冲发生器、复位电路和启停电路等控制逻辑。运算单运算单是运算器的核心。可以执行算术运算(包括加减乘数等基本运算及其附加运算)和逻辑运算(包括移位、逻辑测试或两个值比较)。相对控制单而言,运算器接受控制单的命令而进行动作,即运算单所进行的全部操作都是由控制单发出的控制信号来指挥的,所以它是执行部件。存储单存储单包括CPU片内缓存Cache和寄存器组,是CPU中暂时存放数据的地方,里面保存着那些等待处理的数据,或已经处理过的数据,CPU访问寄存器所用的时间要比访问内存的时间短。寄存器是CPU内部的件,寄存器拥有非常高的读写速度,所以在寄存器之间的数据传送非常快。采用寄存器,可以减少CPU访问内存的次数,从而提高了CPU的工作速度。寄存器组可分为专用寄存器和通用寄存器。专用寄存器的作用是固定的,分别寄存相应的数据;而通用寄存器用途广泛并可由程序员规定其用途。下表列出了CPU关键技术的发展历程以及代表系列,每一个关键技术的诞生都是环环相扣的,处理器这些技术发展历程都围绕着如何不让“CPU闲下来”这一个核心目标展开。 存储器存储空间大小:内存>L3>L2>L1>寄存器;存储器速度快慢排序:寄存器>L1>L2>L3>内存;还有一点值得注意的是:缓存是由最小的存储区块-缓存行(cacheline)组成,缓存行大小通常为64byte。缓存行是什么意思呢?比如你的L1缓存大小是512kb,而cacheline=64byte,那么就是L1里有512*1024/64个cachelineCPU读取存储器数据过程1、CPU要取寄存器X的值,只需要一步:直接读取。2、CPU要取L1cache的某个值,需要1-3步(或者更多):把cache行锁住,把某个数据拿来,解锁,如果没锁住就慢了。3、CPU要取L2cache的某个值,先要到L1cache里取,L1当中不存在,在L2里,L2开始加锁,加锁以后,把L2里的数据复制到L1,再执行读L1的过程,上面的3步,再解锁。4、CPU取L3cache的也是一样,只不过先由L3复制到L2,从L2复制到L1,从L1到CPU。5、CPU取内存则最复杂:通知内存控制器占用总线带宽,通知内存加锁,发起内存读请求,等待回应,回应数据保存到L3(如果没有就到L2),再从L3/2到L1,再从L1到CPU,之后解除总线锁定。CPU为何要有高速缓存CPU在摩尔定律的指导下以每18个月翻一番的速度在发展,然而内存和硬盘的发展速度远远不及CPU。这就造成了高性能能的内存和硬盘价格及其昂贵。然而CPU的高度运算需要高速的数据。为了解决 这个问题,CPU厂商在CPU中内置了少量的高速缓存以解决I\O速度和CPU运算速度之间的不匹配问题。在CPU访问存储设备时,无论是存取数据抑或存取指令,都趋于聚集在一片连续的区域中,这就被称为局部性原理。时间局部性(TemporalLocality):如果一个信息项正在被访问,那么在近期它很可能还会被再次访问。比如循环、递归、方法的反复调用等。空间局部性(SpatialLocality):如果一个存储器的位置被引用,那么将来他附近的位置也会被引用。比如顺序执行的代码、连续创建的两个对象、数组等。举个空间局部性原则例子: 29System.out.println(“spendtime1:”+(System.currentTimeMillis()‐start));30System.out.println(“sum1:”+sum);3132sum=0L;33start=System.currentTimeMillis();34for(intr=0;r<RUNS;r++){35for(intj=0;j<DIMENSION_2;j++){//636for(inti=0;i<DIMENSION_1;i++){//1024*sum+=longs[i][j];38}39}40}41System.out.println(“spendtime2:”+(System.currentTimeMillis()‐start));42System.out.println(“sum2:”+sum);43}44}带有高速缓存的CPU执行计算的流程1.程序以及数据被加载到主内存2.指令和数据被加载到CPU的高速缓存3.CPU执行指令,把结果写到高速缓存4.高速缓存中的数据写回主内存CPU运行安全等级CPU有4个运行级别,分别为:ring0ring1ring2ring3Linux与Windows只用到了2个级别:ring0、ring3,操作系统内部内部程序指令通常运行在ring0级别,操作系统以外的第三方程序运行在ring3级别,第三方程序如果要调用操作系统内部函数功能,由于运行安全级别不够,必须切换CPU运行状态,从ring3切换到ring0,然后执行系统函数,说到这里相信同学们明白为什么JVM创建线程,线程阻塞唤醒是重型操作了,因为CPU要切换运行状态。下面我大概梳理一下JVM创建线程CPU的工作过程step1:CPU从ring3切换ring0创建线程 ———————————————— 版权声明:本文为CSDN博主「谭俊杰Jerry」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。 原文链接:冯诺依曼计算机模型详解_谭俊杰Jerry的博客-CSDN博客_冯诺依曼结构计算机模型
2024最新激活全家桶教程,稳定运行到2099年,请移步至置顶文章:https://sigusoft.com/99576.html
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。 文章由激活谷谷主-小谷整理,转载请注明出处:https://sigusoft.com/45786.html