MATLAB fft实现四大傅里叶分析 〇、DFT离散傅里叶变换 1. 介绍DFT DFT是一个完全与时间无关的纯粹数学运算,本身不具有任何物理意义,但它却是构成四种傅里叶分析的内核。并且由于DFT能够利用矩阵运算,并可借助FFT算法优化大大提升运算效率。 
![fft变换matlab_fft变换matlab程序插图3 \begin{bmatrix} X(0)\\ X(1)\\ \vdots\\ X(N-1) \end{bmatrix}= \begin{bmatrix} W_N^0 & W_N^0 & \dots & W_N^0\\ W_N^0 & W_N^{1\times1} & \dots & W_N^{(N-1)\times1}\\ \vdots & \vdots & \ddots & \vdots\\ W_N^0 & W_N^{1\times(N-1)} & \dots & W_N^{(N-1)\times(N-1)}\\ \end{bmatrix} \begin{bmatrix} x[0]\\ x[1]\\ \vdots\\ x[N-1] \end{bmatrix}](https://sigusoft.com/wp-content/themes/justnews/themer/assets/images/lazy.png)






![fft变换matlab_fft变换matlab程序插图17 \bar{x}[n], n=1,...,N](https://sigusoft.com/wp-content/themes/justnews/themer/assets/images/lazy.png)
![fft变换matlab_fft变换matlab程序插图19 k\Omega_0=\frac{2k\pi}{N}\in[-\pi,\pi], k=1,... N](https://sigusoft.com/wp-content/themes/justnews/themer/assets/images/lazy.png)


![fft变换matlab_fft变换matlab程序插图25 \bar{x}(t), t\in[0,T_0]](https://sigusoft.com/wp-content/themes/justnews/themer/assets/images/lazy.png)



![fft变换matlab_fft变换matlab程序插图33 x[n], n=1,...,N \rightarrow\infty](https://sigusoft.com/wp-content/themes/justnews/themer/assets/images/lazy.png)

![fft变换matlab_fft变换matlab程序插图37 X(\Omega),\Omega\in [-\pi,\pi]](https://sigusoft.com/wp-content/themes/justnews/themer/assets/images/lazy.png)

![fft变换matlab_fft变换matlab程序插图41 \bar{x}(t), t\in[0,T\rightarrow\infty]](https://sigusoft.com/wp-content/themes/justnews/themer/assets/images/lazy.png)

![fft变换matlab_fft变换matlab程序插图45 X(\omega), \omega\in[-f_s/2, f_s/2]](https://sigusoft.com/wp-content/themes/justnews/themer/assets/images/lazy.png)





![fft变换matlab_fft变换matlab程序插图61 指数频谱:c_k = \frac{1}{T}\int_T x(t)e^{-jk(\frac{2\pi}{T})t}dt,k\in(-\infty,\infty)\\ x(t)=\sum_{-\infty}^\infty c_k e^{jk(\frac{2\pi}{T})t},t\in[0,T]\\ 三角频谱:a_k = c_k+c_{-k}\sigusoftuad b_k = j(c_k-c_{-k})\\ x(t)=\sum_{N} a_kcos(k\omega t)+b_ksin(k\omega t)\\](https://sigusoft.com/wp-content/themes/justnews/themer/assets/images/lazy.png)






![fft变换matlab_fft变换matlab程序插图77 x[n]=\frac{1}{2\pi}\int_{-\pi}^\pi X(\Omega)e^{j\Omega n}d\Omega,n\in(-\infty,\infty)\\ X(\Omega)=\sum_{n=-\infty}^{\infty}x[n]e^{-j\Omega n},\Omega\in[-\pi,\pi]\\](https://sigusoft.com/wp-content/themes/justnews/themer/assets/images/lazy.png)


















2024最新激活全家桶教程,稳定运行到2099年,请移步至置顶文章:https://sigusoft.com/99576.html
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。 文章由激活谷谷主-小谷整理,转载请注明出处:https://sigusoft.com/42311.html