yolo进行交通标志检测识别? 利用yolo进行交通标志检测识别可行?有研究价值? 问题: 从图像中识别交通标志对于自动驾驶至关重要。要想实现自动驾驶,车辆必须了解并遵守所有交通规则。当前,特斯拉、谷歌、梅赛德斯-奔驰、丰田、福特、奥迪等许多大公司都在研究自动驾驶。因此,为了实现这项技术的准确性,车辆应该能够解释交通标志并做出相应的决定。 摘要 在本项目项目中,我们将构建一个深度神经网络模型,并将其命名为residual_attention_network,即在残差网络的基础上引入注意力机制,并在 GTSRB交通标志数据集上进行实验,实验结果 表明改进后的残差网络在识别准确率上有明显提高,该模型经过训练可以将图像中存在的交通标志分类为不同的类别。有了这个模型,我们能够设计实现一个GUI识别上传的交通标志,这对自动驾驶汽车来说是一项非常有意义的任务。 什么是交通标志识别? 目前道路中有几种不同类型的交通标志,如限速、禁止进入、交通信号、左转或右转、儿童过马路、重型车辆禁止通过等。交通标志分类是识别交通标志属于哪一类的重要过程和解决方式。 交通标志自动识别是高级驾驶员辅助系统( Advanced Driver Assistance System,ADAS) 和自动驾驶领域的一个重要的研究方向。由于近年来驾驶者对汽车的智能化要求不断提高,交通标志自动识别功能逐渐被各个汽车厂商所重视。因此,越来越多相关领域的研究人员开始致力于交通标志自动识别的研究。在驾驶过程中,驾驶者可能会因为注意力不集中等原因忽视部分交通标志的提示信息,若 ADAS能及时地识别出相关的交通标志并给予驾驶者相关提示,则能够大大提升行车安全性。而在将驾驶任务完全交给行车电脑的自动驾驶领域,准确地识别道路交通标志更是一项对乘客和道路交通安全有着重大影响的任务,因此对交通标志的识别准确率要求极高。 数据集介绍 这次实验所使用的数据集是GTSRB,包括了各种气候条件下,各种各样的交通标志图像。GTSRB 数据集由 43 类交通标志组成,共有 39209 张 训练样本和 12630 张测试样本,样本像素的尺寸范围 大多为 15 × 15 到 250 × 250 之间。部分样本图像如图 4所示



2024最新激活全家桶教程,稳定运行到2099年,请移步至置顶文章:https://sigusoft.com/99576.html
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。 文章由激活谷谷主-小谷整理,转载请注明出处:https://sigusoft.com/24436.html
