python画roc曲线需要什么数据_绘制roc曲线的步骤

python画roc曲线需要什么数据_绘制roc曲线的步骤在 Python 中绘制 ROC 曲线通常需要以下步骤 1 导入必要的库 2 准备数据集 包括真实标签和预测概率 3 使用 roc curve 函数计算假阳性率 FPR 和真阳性率 TPR 4 使用 auc 函数计算曲线下面积 AUC 5 使用 matplotlib 库绘制 ROC 曲线 pythonimport numpy as npimport matplotlib

在Python中绘制ROC曲线通常需要以下步骤:

1. 导入必要的库。

2. 准备数据集,包括真实标签和预测概率。

3. 使用`roc_curve`函数计算假阳性率(FPR)和真阳性率(TPR)。

4. 使用`auc`函数计算曲线下面积(AUC)。

5. 使用`matplotlib`库绘制ROC曲线。

 import numpy as np import matplotlib.pyplot as plt from sklearn.metrics import roc_curve, auc from sklearn.datasets import make_blobs from sklearn.model_selection import train_test_split from sklearn.svm import SVC 生成示例数据集 X, y = make_blobs(n_samples=(4000, 500), cluster_std=[7, 2], random_state=0) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) 训练支持向量机模型 clf = SVC(gamma=0.05).fit(X_train, y_train) 计算ROC曲线的各个点 y_score = clf.decision_function(X_test) fpr, tpr, _ = roc_curve(y_test, y_score) roc_auc = auc(fpr, tpr) 绘制ROC曲线 plt.figure() lw = 2 plt.plot(fpr, tpr, color='darkorange', lw=lw, label='ROC curve (area = %0.2f)' % roc_auc) plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--') plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver operating characteristic example') plt.legend(loc="lower right") plt.show() 

这段代码首先生成了一个二分类的不平衡数据集,然后使用支持向量机(SVM)作为分类器进行训练,并计算了ROC曲线的各个点以及AUC值,最后绘制出了ROC曲线。

请根据您的具体需求调整数据集和分类器。

编程小号
上一篇 2025-03-07 07:36
下一篇 2025-03-07 07:28

相关推荐

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://sigusoft.com/bj/117295.html