Java数据结构算法:B树和B+树 前面我们已经学习了二叉查找树、2-3树以及它的实现红黑树。2-3树中,一个结点做多能有两个key,它的实现红 黑树中使用对链接染色的方式去表达这两个key。接下来我们学习另外一种树型结构B树,这种数据结构中,一个结点允许多于两个key的存在。 B树是一种树状数据结构,它能够存储数据、对其进行排序并允许以O(logn)的时间复杂度进行查找、顺序读取、插入和删除等操作。 1、B树的特性 B树中允许一个结点中包含多个key,可以是3个、4个、5个甚至更多,并不确定,需要看具体的实现。现在我们选 择一个参数M,来构造一个B树,我们可以把它称作是M阶的B树,那么该树会具有如下特点: 每个结点最多有M-1个key,并且以升序排列; 每个结点最多能有M个子结点; 根结点至少有两个子结点;
在实际应用中B树的阶数一般都比较大(通常大于100),所以,即使存储大量的数据,B树的高度仍然比较小,这 样在某些应用场景下,就可以体现出它的优势。 2、B树存储数据 若参数M选择为5,那么每个结点最多包含4个键值对,我们以5阶B树为例,看看B树的数据存储。
3、B树在磁盘文件中的应用 在我们的程序中,不可避免的需要通过IO操作文件,而我们的文件是存储在磁盘上的。计算机操作磁盘上的文件是通过文件系统进行操作的,在文件系统中就使用到了B树这种数据结构。 3.1、磁盘 磁盘能够保存大量的数据,从GB一直到TB级,但是 他的读取速度比较慢,因为涉及到机器操作,读取速度为毫秒 级 。
磁盘由盘片构成,每个盘片有两面,又称为盘面 。盘片中央有一个可以旋转的主轴,他使得盘片以固定的旋转速率 旋转,通常是5400rpm或者是7200rpm,一个磁盘中包含了多个这样的盘片并封装在一个密封的容器内 。盘片的每个表面是由一组称为磁道同心圆组成的 ,每个磁道被划分为了一组扇区 ,每个扇区包含相等数量的数据位,通常是512个子节,扇区之间由一些间隙隔开,这些间隙中不存储数据 。 3.2、磁盘IO
磁盘用磁头来读写存储在盘片表面的位,而磁头连接到一个移动臂上,移动臂沿着盘片半径前后移动,可以将磁头 定位到任何磁道上,这称之为寻道操作。一旦定位到磁道后,盘片转动,磁道上的每个位经过磁头时,读写磁头就 可以感知到该位的值,也可以修改值。对磁盘的访问时间分为 寻道时间,旋转时间,以及传送时间。 由于存储介质的特性,磁盘本身存取就比主存慢很多,再加上机械运动耗费,因此为了提高效率,要尽量减少磁盘I/O,减少读写操作。 为了达到这个目的,磁盘往往不是严格按需读取,而是每次都会预读,即使只需要一个字节,磁盘也会从这个位置开始,顺序向后读取一定长度的数据放入内存。这样做的理论依据是计算机科学中著名的局部性原理:当一个数据被用到时,其附近的数据也通常会马上被使用。由于磁盘顺序读取的效率很高(不需要寻道时间,只需很少的旋转时间),因此预读可以提高I/O效率。 页是计算机管理存储器的逻辑块,硬件及操作系统往往将主存和磁盘存储区分割为连续的大小相等的块,每个存储 块称为一页(1024个字节或其整数倍),预读的长度一般为页的整倍数。主存和磁盘以页为单位交换数据。当程 序要读取的数据不在主存中时,会触发一个缺页异常,此时系统会向磁盘发出读盘信号,磁盘会找到数据的起始位 置并向后连续读取一页或几页载入内存中,然后异常返回,程序继续运行。 文件系统的设计者利用了磁盘预读原理,将一个结点的大小设为等于一个页(1024个字节或其整数倍),这样每 个结点只需要一次I/O就可以完全载入。那么3层的B树可以容纳1024*1024*1024差不多10亿个数据,如果换成二 叉查找树,则需要30层!假定操作系统一次读取一个节点,并且根节点保留在内存中,那么B树在10亿个数据中查 找目标值,只需要小于3次硬盘读取就可以找到目标值,但红黑树需要小于30次,因此B树大大提高了IO的操作效 率。 4、B+树 B+树是对B树的一种变形树,它与B树的差异在于: 1. 非叶结点仅具有索引作用,也就是说,非叶子结点只存储key,不存储value; 2. 树的所有叶结点构成一个有序链表,可以按照key排序的次序遍历全部数据。 4.1 B+树存储数据 若参数M选择为5,那么每个结点最多包含4个键值对,我们以5阶B+树为例,看看B+树的数据存储。 4.2 B+树和B树的对比 B+ 树的优点在于: 1.由于B+树在非叶子结点上不包含真正的数据,只当做索引使用,因此在内存相同的情况下,能够存放更多的key。 2.B+树的叶子结点都是相连的,因此对整棵树的遍历只需要一次线性遍历叶子结点即可。而且由于数据顺序排列并且相连,所以便于区间查找和搜索。而B树则需要进行每一层的递归遍历。 B树的优点在于: 由于B树的每一个节点都包含key和value,因此我们根据key查找value时,只需要找到key所在的位置,就能找到 value,但B+树只有叶子结点存储数据,索引每一次查找,都必须一次一次,一直找到树的最大深度处,也就是叶 子结点的深度,才能找到value。 B+树在数据库中的应用 在数据库的操作中,查询操作可以说是最频繁的一种操作,因此在设计数据库时,必须要考虑到查询的效率问题, 在很多数据库中,都是用到了B+树来提高查询的效率; 在操作数据库时,我们为了提高查询效率,可以基于某张表的某个字段建立索引,就可以提高查询效率,那其实这 个索引就是B+树这种数据结构实现的。 本文未完,本文是Java数据结构与算法教程的课件文档,如需最新全套java数据结构算法,左神算法大厂LeetCode刷题教程请即可。
2024最新激活全家桶教程,稳定运行到2099年,请移步至置顶文章:https://sigusoft.com/99576.html
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。 文章由激活谷谷主-小谷整理,转载请注明出处:https://sigusoft.com/79318.html