一看就懂:FFT算法讲解及应用 怎么理解谐波分析(FFT)?本文将通过常用例子介绍傅立叶变化,以及计算过程中遇到幅值泄漏和栅栏效应,加窗函数原则和最后修复幅值、频率的基本原理,并给出其在高端测量仪器中的应用。 随着技术的发展,数据越来越多样化,不再以单一的形式存在,例如一段录音可被分解成若干种信息,而快速傅立叶变化(简称FFT)常常被应用在数据的分解上,接下来我们讲讲FFT的原理。 什么是FFT? 快速傅立叶变化简称FFT,其实FFT就是DFT(离散傅立叶变化)的一种快速算法,通过时间抽取或频率抽取算法来加快变化过程,具体的算法就不在这里拓展,我们只要了解离散傅立叶变化即可。举个简单的例子,假如手机里正在播放一首音乐,随着时间的推移,歌曲是不是按照它的音符播放呢?若以高低音作为纵轴,时间左右横轴建立直角坐标得到(图1-1),以音符作为横轴建立直角坐标得到(图1-2)。 








2024最新激活全家桶教程,稳定运行到2099年,请移步至置顶文章:https://sigusoft.com/99576.html
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。 文章由激活谷谷主-小谷整理,转载请注明出处:https://sigusoft.com/72351.html
