「知乎·致知计划·应用工程·计算方法」《伪谱法实用指南》(Fornberg,1996)——附录F:伪谱法的基于FFT的实现——F.1 FFT算法 Fornberg, B. (1996).A practical guide to pseudospectral methods(No. 1). Cambridge university press. 基础工程 目 录 附录F:伪谱法的基于FFT的实现 周期性伪谱法几乎总是通过使用FFT算法来实现。对于非周期性PS方法,直接的矩阵

![fft的计算原理_fft计算量插图5 \bbox[#0F0,5px,border:0px solid blue] {u_j, j=0,1, \ldots, N-1}](https://sigusoft.com/wp-content/themes/justnews/themer/assets/images/lazy.png)
![fft的计算原理_fft计算量插图7 \bbox[#0F0,10px,border:10px solid blue] {\hat{u}_k=\frac{1}{N} \sum_{j=0}^{N-1} u_j e^{-2 \pi i k j / N}, \quad k=0,1, \ldots, N-1},\tag{F.1-1}](https://sigusoft.com/wp-content/themes/justnews/themer/assets/images/lazy.png)

![fft的计算原理_fft计算量插图11 \bbox[#0F0,10px,border:10px solid blue] {u_j=\sum_{k=0}^{N-1} \hat{u}_k e^{2 \pi i k j / N}, \quad j=0,1, \ldots, N-1},\tag{F.1-2}](https://sigusoft.com/wp-content/themes/justnews/themer/assets/images/lazy.png)
![fft的计算原理_fft计算量插图13 \bbox[#0FF,5px,border:0px solid blue] {u_j, j=0,1, \ldots, N-1}](https://sigusoft.com/wp-content/themes/justnews/themer/assets/images/lazy.png)

![fft的计算原理_fft计算量插图17 \bbox[#0F0,10px,border:10px solid blue] {\left[\begin{array}{cccccc} 1 & 1 & 1 & 1 & \cdots & 1 \\ 1 & \omega & \omega^2 & \omega^3 & \cdots & \omega^{N-1} \\ 1 & \omega^2 & \omega^4 & \omega^6 & \cdots & \omega^{2 N-2} \\ \vdots & \vdots & & & & \\ \vdots & \vdots & & & & \\ 1 & \omega^{N-1} & \cdots & \cdots & \cdots & \omega^{(N-1)^2} \end{array}\right]\left[\begin{array}{c} \hat{u}_0 \\ \hat{u}_1 \\ \hat{u}_2 \\ \vdots \\ \vdots \\ \hat{u}_{N-1} \end{array}\right]=\left[\begin{array}{c} u_0 \\ u_1 \\ u_2 \\ \vdots \\ \vdots \\ u_{N-1} \end{array}\right]},\tag{F.1-3}](https://sigusoft.com/wp-content/themes/justnews/themer/assets/images/lazy.png)






















2024最新激活全家桶教程,稳定运行到2099年,请移步至置顶文章:https://sigusoft.com/99576.html
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。 文章由激活谷谷主-小谷整理,转载请注明出处:https://sigusoft.com/39905.html