二叉排序树 为什么要引入二叉排序树 我们前面已经介绍了很多数据结构,比如数组、链表、散列表等,数组查找性能高,但是插入、删除性能差,链表插入、删除性能高,但查找性能差,在不考虑散列冲突的话,散列表的插入、删除、查找性能都很高,但是前提是没有散列冲突,此外,散列表存储的数据是无序的,散列表的扩容非常麻烦,涉及到散列冲突时,性能不稳定,另外,散列表用起来爽,构造起来可不简单,要考虑散列函数的设计、哈希冲突的解决、扩容缩容等一系列问题,有没有一种插入、删除、查找性能都不错,构建起来也不是很复杂,性能还很稳定的数据结构呢?这就是我们今天要介绍的数据结构 —— 二叉排序树。 什么是二叉排序树 二叉排序树是一种特殊的二叉树,我们重点「排序」二字,二叉排序树要求,在树中的任意一个节点,其左子树中的每个节点的值,都要小于这个节点的值,而右子树节点的值都大于这个节点的值,所以这么看来,二叉排序树是天然有序的,如果按照昨天讲的中序遍历,得到将是一个从小到大的有序数据集。但是构造二叉排序树的目的,并不是为了排序,而是为了提高查找、插入和删除的速度。不管怎么说,在一个有序数据集上查找数据肯定比无序数据集要快,同时二叉排序树这种非线性结构,也非常有利于插入和删除的实现。 注:二叉排序树也叫做二叉查找树,二叉搜索树,你如果看到类似概念,它们是一个意思。 下面我们就来看看如何实现二叉排序树的插入、查找和删除以及它们对应的时间复杂度。 二叉排序树的插入 首先我们先定义好基本的类结构,还是通过二叉链表来存储二叉排序树,对应的节点类如下: 然后,我们定义下二叉排序树对应类的基本结构: 然后我们按照二叉排序树的定义,实现对应二叉排序树节点的插入方法: 如果是空树,则将其作为根节点,否则判断插入节点数据与当前节点数据的大小,如果小于当前节点,则递归遍历左子树,找到对应的位置插入,如果大于当前节点,则递归遍历右子树找到对应的位置插入。 我们可以写一段简单的测试代码测试节点插入: 

2024最新激活全家桶教程,稳定运行到2099年,请移步至置顶文章:https://sigusoft.com/99576.html
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。 文章由激活谷谷主-小谷整理,转载请注明出处:https://sigusoft.com/60675.html