浅谈FFT算法原理 基于FPGA的FFT算法的硬件实现 快速傅里叶变换(FFT)作为计算和分析工具,在众多学科领域(如信号处理、图像处理、生物信息学、计算物理、应用数学等)有着广泛的应用。在高速数字信号处理领域,如雷达信号处理,FFT的处理速度往往是整个系统设计性能的关键所在。 针对高速实时信号处理的要求,软件实现方法显然满足不了其需要。近年来现场可编程门阵列(FPGA)以其高性能、高灵活性、友好的开发环境、在线可编程等特点,使得基于FPGA的设计可以满足实时数字信号处理的要求,在市场竞争中具有很大的优势。 在FFT算法中,数据的宽度通常都是固定的宽度。然而,在FFT的运算过程中,特别是乘法运算中,运算的结果将不可避免地带来误差。因此,为了保证结果的准确性,采用定点分析是非常必要的。 1 FFT算法原理 FFT算法的基本思想就是利用权函数的周期性、对称性、特殊性及周期N的可互换性,将较长序列的DFT运算逐次分解为较短序列的DFT运算。针对N=2的整数次幂,FFT算法有基-2算法、基-4算法、实因子算法和分裂基算法等。这里,从处理速度和占用资源的角度考虑,选用基-4按时间抽取FFT算法 (DIT)。对于N=4γ,基-4 DIT具有log4N=γ次迭代运算,每次迭代包含N/4个蝶形单。蝶形单的运算表达式为: 



2024最新激活全家桶教程,稳定运行到2099年,请移步至置顶文章:https://sigusoft.com/99576.html
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。 文章由激活谷谷主-小谷整理,转载请注明出处:https://sigusoft.com/57187.html