第08章_聚合函数 我们上一章讲到了 SQL 单行函数。实际上 SQL 函数还有一类,叫做聚合(或聚集、分组)函数,它是对一组数据进行汇总的函数,输入的是一组数据的集合,输出的是单个值。 1. 聚合函数介绍 什么是聚合函数 聚合函数作用于一组数据,并对一组数据返回一个值。
聚合函数类型AVG() SUM()MAX() MIN() COUNT() 聚合函数语法
聚合函数不能嵌套调用。比如不能出现类似“AVG(SUM(字段名称))”形式的调用。 1.1 AVG和SUM函数 可以对数值型数据使用AVG 和 SUM 函数。
1.2 MIN和MAX函数 可以对任意数据类型的数据使用 MIN 和 MAX 函数。
1.3 COUNT函数COUNT(*)返回表中记录总数,适用于任意数据类型。
COUNT(expr) 返回expr不为空的记录总数。
问题:用count(*),count(1),count(列名)谁好呢? 其实,对于MyISAM引擎的表是没有区别的。这种引擎内部有一计数器在维护着行数。 Innodb引擎的表用count(*),count(1)直接读行数,复杂度是O(n),因为innodb真的要去数一遍。但好于具体的count(列名)。问题:能不能使用count(列名)替换count(*)? 不要使用 count(列名)来替代 ,是 SQL92 定义的标准统计行数的语法,跟数据库无关,跟 NULL 和非 NULL 无关。 说明:count(*)会统计值为 NULL 的行,而 count(列名)不会统计此列为 NULL 值的行。 2. GROUP BY 2.1 基本使用
可以使用GROUP BY子句将表中的数据分成若干组 明确:WHERE一定放在FROM后面 在SELECT列表中所有未包含在组函数中的列都应该包含在 GROUP BY子句中
包含在 GROUP BY 子句中的列不必包含在SELECT 列表中
2.2 使用多个列分组
2.3 GROUP BY中使用WITH ROLLUP 使用关键字之后,在所有查询出的分组记录之后增加一条记录,该记录计算查询出的所有记录的总和,即统计记录数量。 注意: 当使用ROLLUP时,不能同时使用ORDER BY子句进行结果排序,即ROLLUP和ORDER BY是互相排斥的。 3. HAVING 3.1 基本使用
过滤分组:HAVING子句行已经被分组。使用了聚合函数。满足HAVING 子句中条件的分组将被显示。HAVING 不能单独使用,必须要跟 GROUP BY 一起使用。
非法使用聚合函数 : 不能在 WHERE 子句中使用聚合函数。如下:
3.2 WHERE和HAVING的对比 区别1:WHERE 可以直接使用表中的字段作为筛选条件,但不能使用分组中的计算函数作为筛选条件;HAVING 必须要与 GROUP BY 配合使用,可以把分组计算的函数和分组字段作为筛选条件。 这决定了,在需要对数据进行分组统计的时候,HAVING 可以完成 WHERE 不能完成的任务。这是因为,在查询语法结构中,WHERE 在 GROUP BY 之前,所以无法对分组结果进行筛选。HAVING 在 GROUP BY 之后,可以使用分组字段和分组中的计算函数,对分组的结果集进行筛选,这个功能是 WHERE 无法完成的。另外,WHERE排除的记录不再包括在分组中。 区别2:如果需要通过连接从关联表中需要的数据,WHERE 是先筛选后连接,而 HAVING 是先连接后筛选。 这一点,就决定了在关联查询中,WHERE 比 HAVING 更高效。因为 WHERE 可以先筛选,用一个筛选后的较小数据集和关联表进行连接,这样占用的资源比较少,执行效率也比较高。HAVING 则需要先把结果集准备好,也就是用未被筛选的数据集进行关联,然后对这个大的数据集进行筛选,这样占用的资源就比较多,执行效率也较低。 小结如下:优点缺点WHERE先筛选数据再关联,执行效率高不能使用分组中的计算函数进行筛选HAVING可以使用分组中的计算函数在最后的结果集中进行筛选,执行效率较低 开发中的选择: WHERE 和 HAVING 也不是互相排斥的,我们可以在一个查询里面同时使用 WHERE 和 HAVING。包含分组统计函数的条件用 HAVING,普通条件用 WHERE。这样,我们就既利用了 WHERE 条件的高效快速,又发挥了 HAVING 可以使用包含分组统计函数的查询条件的优点。当数据量特别大的时候,运行效率会有很大的差别。 4. SELECT的执行过程 4.1 查询的结构 4.2 SELECT执行顺序 你需要记住 SELECT 查询时的两个顺序: 1. 关键字的顺序是不能颠倒的: 2.SELECT 语句的执行顺序(在 MySQL 和 Oracle 中,SELECT 执行顺序基本相同):
比如你写了一个 SQL 语句,那么它的关键字顺序和执行顺序是下面这样的: 在 SELECT 语句执行这些步骤的时候,每个步骤都会产生一个,然后将这个虚拟表传入下一个步骤中作为输入。需要注意的是,这些步骤隐含在 SQL 的执行过程中,对于我们来说是不可见的。 4.3 SQL 的执行原理 SELECT 是先执行 FROM 这一步的。在这个阶段,如果是多张表联查,还会经历下面的几个步骤:首先先通过 CROSS JOIN 求笛卡尔积,相当于得到虚拟表 vt(virtual table)1-1;通过 ON 进行筛选,在虚拟表 vt1-1 的基础上进行筛选,得到虚拟表 vt1-2;添加外部行。如果我们使用的是左连接、右链接或者全连接,就会涉及到外部行,也就是在虚拟表 vt1-2 的基础上增加外部行,得到虚拟表 vt1-3。 当然如果我们操作的是两张以上的表,还会重复上面的步骤,直到所有表都被处理完为止。这个过程得到是我们的原始数据。 当我们拿到了查询数据表的原始数据,也就是最终的虚拟表 ,就可以在此基础上再进行 。在这个阶段中,会根据 vt1 表的结果进行筛选过滤,得到虚拟表 。 然后进入第三步和第四步,也就是 。在这个阶段中,实际上是在虚拟表 vt2 的基础上进行分组和分组过滤,得到中间的虚拟表 和 。 当我们完成了条件筛选部分之后,就可以筛选表中提取的字段,也就是进入到 。 首先在 SELECT 阶段会提取想要的字段,然后在 DISTINCT 阶段过滤掉重复的行,分别得到中间的虚拟表 和 。 当我们提取了想要的字段数据之后,就可以按照指定的字段进行排序,也就是 ,得到虚拟表 。 最后在 vt6 的基础上,取出指定行的记录,也就是 ,得到最终的结果,对应的是虚拟表 。 当然我们在写 SELECT 语句的时候,不一定存在所有的关键字,相应的阶段就会省略。 同时因为 SQL 是一门类似英语的结构化查询语言,所以我们在写 SELECT 语句的时候,还要注意相应的关键字顺序,所谓底层运行的原理,就是我们刚才讲到的执行顺序。
2024最新激活全家桶教程,稳定运行到2099年,请移步至置顶文章:https://sigusoft.com/99576.html
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。 文章由激活谷谷主-小谷整理,转载请注明出处:https://sigusoft.com/50429.html