红黑树 与 B+树区别和应用场景 红黑树 红黑树是每个节点都带有颜色属性的二叉查找树,颜色或红色或黑色。再二叉查找树强制一般要求以外,对于任何有效的红黑树我们增加了如下的额外要求: 1. 节点是红色或黑色 2. 根节点是黑色。 3 每个叶节点(NIL节点,空节点)是黑色的。 4 每个红色节点的两个子节点都是黑色。(从每个叶子到根的所有路径上不能有两个连续的红色节点) 5. 从任一节点到其每个叶子的所有路径都包含相同数目的黑色节点。 红黑树和avl(二叉平衡树)的比较 1. 如果插入一个node引起了树的不平衡,AVL和RB-Tree(红黑树)都是最多只需要2次旋转操作,即两者都是O(1);但是在删除node引起树的不平衡时,最坏情况下,AVL需要维护从被删node到root这条路径上所有node的平衡性,因此需要旋转的量级O(logN),而RB-Tree最多只需3次(因为不需要严格的平衡,从根到叶子的最长的可能路径不多于最短的可能路径的两倍长)旋转以及修改节点的颜色,只需要O(1)的复杂度。 2. 其次,AVL的结构相较RB-Tree来说更为平衡,在插入和删除node更容易引起Tree的unbalance,因此在大量数据需要插入或者删除时,AVL需要rebalance的频率会更高。因此,RB-Tree在需要大量插入和删除node的场景下,效率更高。自然,由于AVL高度平衡,因此AVL的search效率更高。 分享一个红黑树应用的视频讲解:Linux c/c++ 后台开发——90分钟搞定红黑树应用 红黑树实际应用: IO多路复用epoll的实现采用红黑树组织管理sockfd,以支持快速的增删改查.ngnix中,用红黑树管理timer,因为红黑树是有序的,可以很快的得到距离当前最小的定时器.java中TreeMap,jdk1.8的hashmap的实现. B+树 B+ 树是一种树数据结构,是一个n叉排序树,每个节点通常有多个孩子,一棵B+树包含根节点、内部节点和叶子节点。根节点可能是一个叶子节点,也可能是一个包含两个或两个以上孩子节点的节点。 ( ps:举例说明3阶B-树指的是每个结点最多2个关键字,3个孩子) B+树是对B树的一种变形树,它与B树的差异在于:有k个子结点的结点必然有k个关键码;非叶结点仅具有索引作用,跟记录有关的信息均存放在叶结点中。树的所有叶结点构成一个有序链表,可以按照关键码排序的次序遍历全部记录,便于区间查找和遍历。B+ 树的优点在于:由于B+树在内部节点上不包含数据信息,因此在内存页中能够存放更多的key。 数据存放的更加紧密,具有更好的空间局部性。因此访问叶子节点上关联的数据也具有更好的缓存命中率。B+树的叶子结点都是相连的,因此对整棵树的便利只需要一次线性遍历叶子结点即可。而且由于数据顺序排列并且相连,所以便于区间查找和搜索。而B树则需要进行每一层的递归遍历。相邻的素可能在内存中不相邻,所以缓存命中性没有B+树好。但是B树也有优点,其优点在于,由于B树的每一个节点都包含key和value,因此经常访问的素可能离根节点更近,因此访问也更迅速。下面是B 树和B+树的区别图:
b+树的应用场景: B/B+树是为了磁盘或其它存储设备而设计的一种平衡多路查找树(相对于二叉,B树每个内节点有多个分支),与红黑树相比,在相同的的节点的情况下,一颗B/B+树的高度远远小于红黑树的高度(在下面B/B+树的性能分析中会提到).B/B+树上操作的时间通常由存取磁盘的时间和CPU计算时间这两部分构成,而CPU的速度非常快,所以B树的操作效率取决于访问磁盘的次数,关键字总数相同的情况下B树的高度越小,磁盘I/O所花的时间越少.二叉查找树的结构不适合数据库,因为它的查找效率与层数相关。越处在下层的数据,就需要越多次比较。对于数据库来说,每进入一层,就要从硬盘读取一次数据,这非常致命,因为硬盘的读取时间远远大于数据处理时间,数据库读取硬盘的次数越少越好。这种数据结构,非常有利于减少读取硬盘的次数。假定一个节点可以容纳100个值,那么3层的B树可以容纳100万个数据,如果换成二叉查找树,则需要20层!假定操作系统一次读取一个节点,并且根节点保留在内存中,那么B树在100万个数据中查找目标值,只需要读取两次硬盘。 原文:红黑树 与 B+树区别和应用场景
2024最新激活全家桶教程,稳定运行到2099年,请移步至置顶文章:https://sigusoft.com/99576.html
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。 文章由激活谷谷主-小谷整理,转载请注明出处:https://sigusoft.com/19002.html