高斯核函数 (Gaussian kernel),也称 径向基 (RBF) 函数,就是某种沿径向对称的标量函数,用于 将有限维数据映射到高维空间。通常定义为空间中任意一点到某一中心点之间的欧式距离的单调函数,可记作,其作用往往是局部的 , 即当远离时函数取值很小。
定义为:
为核函数中心,为向量和向量的欧式距离(L2范数),随着两个向量的距离增大,高斯核函数单调递减。
控制高斯核函数的作用范围,其值越大,高斯核函数的局部影响范围就越大。
也不要选太小,否则在分类任务中容易过拟合。
高斯函数具有五个十分重要的性质,它们是:
(1)二维高斯函数具有旋转对称性,即滤波器在各个方向上的平滑程度是相同的.一般来说,一幅图像的边缘方向是事先不知道的,因此,在滤波前是无法确定一个方向上比另一方向上需要更多的平滑.旋转对称性意味着高斯平滑滤波器在后续边缘检测中不会偏向任一方向.
(2)高斯函数是单值函数.这表明,高斯滤波器用像素邻域的加权均值来代替该点的像素值,而每一邻域像素点权值是随该点与中心点的距离单调增减的.这一性质是很重要的,因为边缘是一种图像局部特征,如果平滑运算对离算子中心很远的像素点仍然有很大作用,则平滑运算会使图像失真.
(3)高斯函数的傅里叶变换频谱是单瓣的.正如下面所示,这一性质是高斯函数付立叶变换等于高斯函数本身这一事实的直接推论.图像常被不希望的高频信号所污染(噪声和细纹理).而所希望的图像特征(如边缘),既含有低频分量,又含有高频分量.高斯函数傅里叶变换的单瓣意味着平滑图像不会被不需要的高频信号所污染,同时保留了大部分所需信号.
(4)高斯滤波器宽度(决定着平滑程度)是由参数σ表征的,而且σ和平滑程度的关系是非常简单的.σ越大,高斯滤波器的频带就越宽,平滑程度就越好.通过调节平滑程度参数σ,可在图像特征过分模糊(过平滑)与平滑图像中由于噪声和细纹理所引起的过多的不希望突变量(欠平滑)之间取得折衷.
(5)由于高斯函数的可分离性,大高斯滤波器可以得以有效地实现.二维高斯函数卷积可以分两步来进行,首先将图像与一维高斯函数进行卷积,然后将卷积结果与方向垂直的相同一维高斯函数卷积.因此,二维高斯滤波的计算量随滤波模板宽度成线性增长而不是成平方增长
(1)核函数发展历史
早在1964年Aizermann等在势函数方法的研究中就将该技术引入到机器学习领域,但是直到1992年Vapnik等利用该技术成功地将线性SVMs推广到非线性SVMs时其潜力才得以充分挖掘。而核函数的理论则更为古老,Mercer定理可以追溯到1909年,再生核希尔伯特空间(ReproducingKernel Hilbert Space, RKHS)研究是在20世纪40年代开始的。
(2)核函数方法原理
根据模式识别理论,低维空间线性不可分的模式通过非线性映射到高维特征空间则可能实现线性可分,但是如果直接采用这种技术在高维空间进行分类或回归,则存在确定非线性映射函数的形式和参数、特征空间维数等问题,而最大的障碍则是在高维特征空间运算时存在的“维数灾难”。采用核函数技术可以有效地解决这样问题。
设x,z∈X,X属于R(n)空间,非线性函数Φ实现输入间X到特征空间F的映射,其中F属于R(m),n<<m。根据核函数技术有:
K(x,z) =<Φ(x),Φ(z) > (1)
其中:<, >为内积,K(x,z)为核函数。从式(1)可以看出,核函数将m维高维空间的内积运算转化为n维低维输入空间的核函数计算,从而巧妙地解决了在高维特征空间中计算的“维数灾难”等问题,从而为在高维特征空间解决复杂的分类或回归问题奠定了理论基础。
(3)核函数特点
核函数方法的广泛应用,与其特点是分不开的:
1)核函数的引入避免了“维数灾难”,大大减小了计算量。而输入空间的维数n对核函数矩阵无影响,因此,核函数方法可以有效处理高维输入。
2)无需知道非线性变换函数Φ的形式和参数.
3)核函数的形式和参数的变化会隐式地改变从输入空间到特征空间的映射,进而对特征空间的性质产生影响,最终改变各种核函数方法的性能。
4)核函数方法可以和不同的算法相结合,形成多种不同的基于核函数技术的方法,且这两部分的设计可以单独进行,并可以为不同的应用选择不同的核函数和算法。
(4)常见核函数
核函数的确定并不困难,满足Mercer定理的函数都可以作为核函数。常用的核函数可分为两类,即内积核函数和平移不变核函数,如:
1)高斯核函数K(x,xi) =exp(-||x-xi||2/2σ2;
2)多项式核函数K(x,xi)=(x·xi+1)^d, d=1,2,…,N;
3)感知器核函数K(x,xi) =tanh(βxi+b);
4)样条核函数K(x,xi) = B2n+1(x-xi)。
(5)核函数方法实施步骤
核函数方法是一种模块化(Modularity)方法,它可分为核函数设计和算法设计两个部分,具体为:
1)收集和整理样本,并进行标准化;
2)选择或构造核函数;
3)用核函数将样本变换成为核函数矩阵,这一步相当于将输入数据通过非线性函数映射到高维
特征空间;
4)在特征空间对核函数矩阵实施各种线性算法;
5)得到输入空间中的非线性模型。
显然,将样本数据核化成核函数矩阵是核函数方法中的关键。注意到核函数矩阵是l×l的对称矩阵,其中l为样本数。
(6)核函数在模式识别中的应用
1)新方法。主要用在基于结构风险最小化(Structural Risk Minimization,SRM)的SVM中。
2)传统方法改造。如核主分析(kernel PCA)、核主回归(kernel PCR)、核部分最小二乘法(kernel PLS)、核Fisher判别分析(Kernel Fisher Discriminator, KFD)、核独立主分析(Kernel Independent Component Analysis,KICA)等,这些方法在模式识别等不同领域的应用中都表现了很好的性能。
2024最新激活全家桶教程,稳定运行到2099年,请移步至置顶文章:https://sigusoft.com/99576.html
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。 文章由激活谷谷主-小谷整理,转载请注明出处:https://sigusoft.com/116516.html